

Severe Inhibition of Choroidal Neovascularization in Mice With a Combined Deficiency of MMP-2 and MMP-9 Genes

V. Lambert¹, B. Wielockx³, C. Munaut¹, C. Galopin¹, M. Jost¹, Z. Werb⁴, A. Baker⁵, C. Libert³, A. Noel¹, J.-M. Foidart¹ and J.-M. Rakic²

¹Laboratory of Tumor and Development Biology, C.R.C.E., University of Liege, Belgium ; ²Ophthalmology, University Hospital (CHU), Liege, Belgium; ³Department of Molecular Biology, University of Ghent, Belgium; ⁴Department of Anatomy, University of California, San Francisco, CA; ⁵Bristol Heart Institute, University of Bristol, UK.

cation

1.50

₿ 1.25

1.75

1 00

icat ion

quar

ŝ

2.0

in WT mice. Both TIMP-1 and TIMP-2 overexpression significantly reduced choroidal angiogenesis (p-0.001) compared to WT controls injected with control viruses (AdRR5). We then evaluated the effects of broad spectrum (BB-94) or more selective MMP inhibitors (Ro 28-2653 inhibiting preferentially MMP-2, MMP-9 and MT1-MMP) on CNV development by treating WT mice with daily systemic injections. Both inhibitors significantly reduced the CNV formation. However, Ro-28-2653 was significantly more efficient (p<0.001) than BB-94. Interestingly, selective MMP inhibiton treatment started five days after laser induction also significantly inhibited the development of choroidal angiogenesis (40% inhibition).